
Hyrise-R: Scale-out and Hot-Standby through Lazy Master
Replication for Enterprise Applications

David Schwalb, Jan Kossmann, Martin Faust, Stefan Klauck, Matthias Uflacker, Hasso Plattner

Hasso-Plattner-Institute, Germany
Contact: david.schwalb@hpi.de

ABSTRACT
In-memory database systems are well-suited for enterprise
workloads, consisting of transactional and analytical queries.
A growing number of users and an increasing demand for
enterprise applications can saturate or even overload single-
node database systems at peak times. Better performance
can be achieved by improving a single machine’s hardware
but it is often cheaper and more practicable to follow a
scale-out approach and replicate data by using additional
machines.

In this paper we present Hyrise-R, a lazy master repli-
cation system for the in-memory database Hyrise. By set-
ting up a snapshot-based Hyrise cluster, we increase both
performance by distributing queries over multiple instances
and availability by utilizing the redundancy of the cluster
structure. This paper describes the architecture of Hyrise-
R and details of the implemented replication mechanisms.
We set up Hyrise-R on instances of Amazon’s Elastic Com-
pute Cloud and present a detailed performance evaluation
of our system, including a linear query throughput increase
for enterprise workloads.

1. INTRODUCTION
In-memory databases, like SAP HANA [20, 21], HyPer

[15] or Hyrise [11, 10], are well-suited for mixed workloads
as they are issued from enterprise applications. Since the
use of in-memory technologies for enterprise databases, new
applications have been developed, which attract a growing
number of users, who submit increasingly complex queries
for interactive applications. The resulting increased work-
load requires scalability. Instead of scale-up, i.e. exploiting
an increasingly large shared-memory server, scale-out, i.e.
exploiting an increasing number of interconnected servers
(cluster), is recognized to be the cheaper, more flexible, more
resilient, and more scalable approach [6, 17]. There are two
techniques to distribute data within a cluster: partitioning
and replication. Partitioning is the splitting of data items,
e.g. tables, rows, columns. Database replication means that

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

IMDM ’15, August 31 2015, Kohala Coast, HI, USA
c� 2015 ACM. ISBN 978-1-4503-3713-7/15/08. . . $15.00

DOI: http://dx.doi.org/10.1145/2803140.2803147

data items are duplicated and stored on multiple nodes.
The analysis of modern workload distribution shows that

more than 80% of OLTP queries and for OLAP even more
than 90% are read queries [16]. Read queries are easily par-
allelizable as they are not able to violate any consistency or
isolation requirements which means that no locking mecha-
nisms are required. The large amount of read queries and
the possibility to distribute them among several nodes make
the concept of database replication desirable for enterprise
applications.
In the following we are going to present how we imple-

mented database replication for the in-memory database
Hyrise1, which challenges we faced upon doing that and
which results we got from evaluating our solution with dif-
ferent experiments. In the end we will give a conclusion and
talk about future work.

2. RELATED WORK
Quite some work has been done in the area of replication

and it mainly di↵ers in the applied replication mechanisms.
Gray et al. summarize the two main replication models [9].
They distinguish two ways how to ”propagate updates to
the replicas”, i.e. eager and lazy, and two ways to ”regulate
replica updates”, i.e. group and master.
Eager replication propagates updates to all replicas as

part of the transaction. When a transaction is commit-
ted, it is executed on every node atomically. Following,
all data items in the cluster, i.e. on all nodes, are at the
same state after the end of a transaction. In contrast, lazy
replication postpones the updates of replicas. The propa-
gation of changes to other nodes is handled asynchronously.
Lazy replication delivers better performance than eager ap-
proaches since it does not need locking mechanisms or addi-
tional messages to keep the nodes synchronized but has to
assure consistency in another way as eager replication.
The second model di↵erentiates where data altering trans-

actions can be issued. The first approach allows them only
on the master, also called primary node, which is responsible
to propagate changes to the replica, respectively secondary,
nodes. Contrary to master replication, group replication,
a so-called update everywhere strategy, allows write-queries
on every node and propagates the changes from there to the
other nodes. Resulting, there is no designated master node
within the cluster.
Kemme et al. present a way to implement eager replica-

tion for a real-world database, Postgres-R [14]. They also

1https://github.com/hyrise/hyrise

provide techniques to avoid limitations and disadvantages of
eager database replication. For example, their implementa-
tion executes data altering operations on so-called shadow
copies. The changes of these shadow copies are then propa-
gated shortly before a particular transaction is committed.
This enables the database to keep consistency without lock-
ing on all nodes or suspending of certain queries.

Breitbart et al. focus in their work on lazy database repli-
cation [3]. In contrast to our solution they investigate an
update everywhere solution and propose ways how to opti-
mize the serialization of queries in order to enhance perfor-
mance. The authors eliminate data placement requirements
with their solution and proof their performance enhance-
ment with an extensive evaluation.

Mühlbauer et al. introduce ScyPer, a scale-out version
of the in-memory database HyPer, which implements lazy
master replication [18]. They propose a row-layout for pri-
mary nodes, which is better suited for transaction process-
ing. Replica nodes can store data in a row, column or hybrid
format.

In [23] Thomson et al. discuss the softening of traditional
ACID transactions in order to provide linear scalability and
give examples for those systems. In their work they intro-
duce Calvin a transaction scheduling and data replication
layer that reduces contention costs by using a deterministic
ordering guarantee.

Not completely related to database replication, but im-
portant for availability, is the work of Chen et al. [5]. If
availability should be increased, a proper failure detection
is indispensable. Chen and his colleagues introduce metrics
for failure detection algorithms to measure their quality of
service. Furthermore they present a new failure detection
algorithm and analyze its quality of service. We are not fo-
cusing on failure detection, but it is still one aspect of our
solution.

Interesting in terms of node-to-node communication is the
work of Hoefler et al. [13]. They present a new algorithm
that implements MPI_BCAST for the Open MPI 2 framework
over InfiniBand3 in a practically constant time independent
of the communicator size. For our work an e�cient way of
communicating is obviously of importance, we are going to
talk about this in Section 3.2.

3. IMPLEMENTATION
Hyrise-R implements lazy master replication for Hyrise,

an in-memory database system focusing on optimization for
both transactional (OLTP) and analytical processing (OLAP)
by implementing a main delta architecture [16]. It also im-
plements an insert-only approach where delete operations
mark a record as invalid and updates do the same, but addi-
tionally add a new record. We present our implementation
Hyrise-R, which expands Hyrise and makes it possible to run
it as a cluster to increase query throughput and availability.

3.1 General approach
Figure 1 illustrates our implementation, consisting of a

query dispatcher and the database cluster. Users submit
their queries to the dispatcher, which redirects them to the
cluster nodes. The dispatcher is responsible for fulfilling
replication transparency, which means that the cluster should,

2http://www.open-mpi.org
3http://www.infinibandta.org

Dispatcher

Write workload Read workload

Request Handler

R

Data
Storage

Cluster Interface

Logger

Primary Node

Request Handler

Data
Storage

Cluster Interface

Logger

Replica 1
R

Request Handler

Data
Storage

Cluster Interface

Logger

Replica n

● ● ●

Cluster
R R

R

Figure 1: Architecture of Hyrise-R.

from a user’s perspective, behave as a single node without
clustering functionality. Even more, there should be no way
of telling whether a single node or a cluster is accessed [7].
The dispatcher redirects read queries in a round-robin man-
ner to the cluster nodes. There is no logic implemented
which recognizes the type of a query. Read and respectively
write queries have to be sent to di↵erent endpoints of the
dispatcher. There is no further metadata needed to dispatch
queries to nodes. On the other hand, data altering queries
are only sent to the primary node. The current version of
the dispatcher is a single point of failure. However, the dis-
patcher has a lower risk to fail as it is a much less complex
software system than a database server. Furthermore, it is
easier to harden and extend to increase its availability.
The database cluster consists of one primary node and an

arbitrary number of replica nodes. The nodes are by our
implementation extended Hyrise instances. We chose to im-
plement lazy master replication for Hyrise-R. Using master
replication is justifiable by the comparable small amount of
write queries [16] and the fact that it has less chances for
conflicting updates. The delay caused by lazy replication
for read only replica nodes is acceptable for most OLAP
applications. OLAP queries as part of writing transactions
have to be executed on the master node. The architecture of
HYRISE-R is not suitable as basis for applications with only
such workload like available-to-promise [24]. Read queries
are handled like normal in Hyrise. Data altering queries
are always sent to the primary node, which uses the Hyrise
BufferedLogger. The BufferedLogger was initially added
to Hyrise with the implementation of a multi-version con-
currency control mechanism with in-memory optimized log-
ging [22]. The BufferedLogger logs transactions to the file
system either when a commit is issued or at regular inter-
vals. The logging information was intended to be used for
recovery or persistency use cases. In our case, logging infor-
mation is not only written to the file system but also sent
to the Hyrise ClusterInterface. The ClusterInterface
sends this information every N calls, when the information
bu↵er gets too large or periodically to the replica nodes.

N, the bu↵er size as well as the time span for the periodic
sending are configurable. The ClusterInterface of replica
nodes replays the transaction information with help of the
BufferedLogger and applies them to the replicated data set.
Replica nodes acknowledge the reception of replication data.
Sending only logging information and not complete queries
reduces execution overhead. Hyrise implements further in-
memory logging optimization techniques, e.g. dictionary en-
coded logging information by sending valueIds and not the
actual values.

We selected suitable values for the number of calls N, the
log bu↵er size and the maximum period until replication in-
formation gets sent. The log bu↵er has the same size as
the BufferedLogger’s bu↵er used for recovery, 16384 byte,
which is reasonable regarding the fact that the data has to
be sent over the network. The maximum period works as an
upper bound in small load scenarios. As described above, a
certain delay is acceptable for most OLAP workloads. We
wanted to avoid a delay larger than a second, considering
some network delay we chose a maximum period of 500 mil-
liseconds. To send information when the ClusterInterface
got called a certain number of times is a good way to han-
dle heavy load scenarios and there is obviously a tradeo↵
between more and bigger messages. By experimenting we
found out that sending information with every call of the
ClusterInterface degrades performance in heavy load sce-
narios and eight or ten seems to be a good value for N.

3.2 Communication
The theoretical maximum number of replicas is not re-

stricted. However, the cluster management overhead will
increase with the number of replicas. The description of the
replication in Section 3.1 shows the need for a communi-
cation mechanism between the primary node and replicas.
This mechanism has to fulfill three requirements:

• Multicast Communication The used technology has
to support multicast communication since an unicast
approach where messages have to be sent to every sin-
gle node is not acceptable. It would decrease the code
quality and increase complexity unnecessarily.

• Reliability That messages reach their recipient has to
be guaranteed. The loss of messages is not acceptable
because even though consistency is not always guar-
anteed with our approach, at some points in time the
nodes are consistent. Non-reliability of message deliv-
ery would dissolve this guarantee.

• Scalability The amount of data exchanged under heavy
workload is large, hence the chosen communication
technology must not be the bottleneck especially re-
garding larger numbers of replicas, otherwise the data
sets of primary and replica nodes would converge and
lose the possibility to catch up and become consistent
again.

At first we triedOpenPGM 4, an open source implementation
of the Pragmatic General Multicast specification. It imple-
ments a multicast protocol and aims to be reliable and scal-
able. Therefore, it delivers all the requested requirements
but it was quite complex to implement it in our scenario
and the performance was not completely satisfying.

4https://code.google.com/p/openpgm/

We looked into several other opportunities and finally de-
cided to use nanomsg5. Nanomsg is similar to ZeroMQ6,
builds partly on the same concepts and aims for e�ciency.
It claims to be an improvement regarding performance and
architecture by having several changes: it is implemented in
C instead of C++, has an improved threading model and
a couple of other enhancements. Nanomsg supports sev-
eral communication mechanisms within processes, between
processes and network transport via TCP. Setup and im-
plementation took less e↵ort compared to OpenPGM and
simple performance comparisons showed clear advantages
for nanomsg.
Nanomsg o↵ers a couple of common communication pat-

terns like bus, publisher-subscriber and survey. The sur-
vey pattern matches exactly our needs, where a central en-
tity (the primary node) sends a survey (replication data)
to all other entities (the replica nodes) and expects their
vote on the survey (acknowledgement of replication data).
Nanomsg’s implementation of the publisher-subscriber pat-
tern does not allow answers of the subscribers. Nanomsg
satisfies all three requirements: multicast communication is
achieved by the communication pattern we chose, reliability
by using TCP and scalability by the design principles and
architecture of the framework.
We implemented two communication channels, both fol-

lowing the survey pattern. The first is used for cluster main-
tenance, e.g. notifying the primary node when a new replica
enters the cluster or exchanging heartbeats. The second
one serves as communication channel for replication data.
We could have used a single channel for this but using two
channels for di↵erent tasks o↵ers a cleaner structure and
the possibility to handle the channels separately on di↵erent
threads. We implemented a simple protocol: the first byte of
every message declares the message type and the second byte
the nodeId of the sender. The message types are: NEW_NODE,
HEARTBEAT_REQUEST, HEARTBEAT_REPLY, LOG_ATTACHED and
LOG_RECEIVED. NEW_NODE is used by replica nodes to sub-
scribe to the cluster. LOG_ATTACHED is the message type
used by the primary node for sending replication data and
LOG_RECEIVED is used as an acknowledgement message by
the replica nodes.

3.3 Failover
Besides performance, replication can increase availabil-

ity by redundancy. The importance of availability becomes
clear if we imagine enterprise use cases where seconds of
downtime can result in decreasing profit or loss of customers.
Cecchet et al. describe a case of a Fortune-500 company,
which runs a large travel ticket booking system [4]. It is easy
to imagine that even a short outage may force customers to
switch to another booking system. This is applicable to
other enterprise use cases as well.
If a replica node crashes, the performance of the database

cluster will drop. Data altering queries can still be executed
on the primary node and the cluster management will be un-
a↵ected. This is undesirable but acceptable. If on the other
hand the primary node crashes, there is no way to execute
data altering queries as we do not allow update everywhere.
Therefore, the failed primary node needs a successor. When
the primary node crashes, the replica nodes are either ex-
actly in the same state or almost. Because of that it is
5http://nanomsg.org
6http://zeromq.org

e�cient to promote a replica node to the new primary node.
In order to be able to do this a failure in the primary

node has to be detected. There are three main objectives
for algorithms that detect failures: a low message frequency
to reduce overhead, a small timespan between the occur-
rence of a failure and its detection to increase availability
and a small probability of premature failure detection to
avoid misplaced failover handling [8]. These objectives in-
terfere with each other. Hence, failure detection protocols
should be tuned for the specific use case to set focus on those
objectives. The probability of premature failure detection is
mainly influenced by package loss and delay and not avoid-
able if the probability of package loss and delay are greater
zero.

In our implementation replica nodes detect a failure of
the master node. After one of them becomes the new pri-
mary node it informs the dispatcher about its new role. The
detection is performed by a heartbeat protocol. The pri-
mary node sends periodically messages of the type HEART-
BEAT_REQUEST to all replica nodes. They reply with a mes-
sage of type HEARTBEAT_REPLY and their current commitId.
The current commitId is necessary for delivering statistics
and to monitor how much the commitIds of all nodes dif-
fer. The replica nodes check periodically if they received a
HEARTBEAT_REQUEST from the primary node. If the amount
of time they have not received such a message exceeds a
certain threshold (TH), the primary node is considered to
have failed and the first replica node which subscribed to the
cluster will replace it. The threshold, the heartbeat inter-
val (HI) and the check interval (CI) are configurable. The
maximum (1), average if CI < HI (2) and average if CI >=
HI (3) time our algorithm takes to detect a failed primary
node are:

Worst Case = dTH/CIe ⇤ CI (1)

Avg Case = round((TH �HI/2)/CI) ⇤ CI + CI/2 (2)

Avg Case = b(TH �HI/2)/CIc ⇤ CI + CI/2 (3)

The reason for letting the primary node request a reply from
the replica nodes and not just letting the replica nodes send
their commitId and wait for a response of the primary node
is due to the fact that all replica nodes should send their
status roughly at the same time without a complicated syn-
chronization mechanism. If the information would not be
pulled from but pushed by the replica nodes, they would
either send it at possibly di↵erent times or would have to
synchronize between each other.

If transactions are committed on the primary node and
it fails before those commits were sent to the replica nodes,
they are still saved to a log file on the primary node’s persis-
tent storage. After a failover the new primary node will use
this information to recover as explained in Section 3.1. The
recovering primary node needs access to the failed primary
node’s log file, which can be quite complicated. Another ap-
proach to solve this problem would be to implement eager
replication as presented in Section 2.

4. EVALUATION
In order to evaluate Hyrise-R we conducted a series of

measurements for di↵erent scenarios. The measurements
were taken with five instances of Amazon’s EC2 c4.8xLarge 7.

7https://aws.amazon.com/ec2/instance-types/

They ran a specifically optimized Intel Xeon E5-2666 v3 with
36 vCPUs or 132 so-called EC2 Compute Units (ECU). An
ECU“provides the equivalent CPU capacity of a 1.0-1.2 GHz
2007 Opteron or 2007 Xeon processor” [1]. The main mem-
ory measured 60 GiB and their persistent storage devices
were SSDs. Of special interest is their Enhanced Network-
ing feature, which claims to deliver improved network per-
formance by a new network virtualization stack and a higher
guaranteed bandwidth. Amazon o↵ers so-called placement
groups for clusters. The instances in a placement group ben-
efit from lower latencies and higher throughput.
In the actual setup up four instances were running Hyrise-

R and one instance was running the dispatcher and our
benchmark tool. We used the Apache HTTP server bench-
marking tool8 for sending and measuring requests concur-
rently. For read workloads we executed a GroupByScan on
a table with one million rows and for write workloads we
inserted in a table with twenty thousand records. The fol-
lowing subsections present the conducted measurements and
results.

4.1 Scale-Out

Figure 2: Increasing number of replicas with read-only work-
load.

One of the main targets of Hyrise-R is to improve the
performance of Hyrise by a scale-out approach. In this ex-
periment we send only read requests to the cluster and in-
creased the number of replica nodes from none to three. As
we can see in Figure 2 our solution scales really well. The
linear performance improvement can result from caching ef-
fects [2] and less overhead through context switching. The
first target, to improve the performance by scaling out was
achieved.

4.2 Availability
The second main target of our implementation was to in-

crease availability, which is achieved by the implementation
of a failover and heartbeat protocol as described in Sec-
tion 3.3. A couple of test cases showed that our failover
mechanism works and is completed in the boundaries calcu-
lated above.

8http://httpd.apache.org/docs/2.2/programs/ab.html

4.3 Mixed Workload Performance

Figure 3: Increasing number of replicas with mixed workload
(except first measurement).

The idea behind this experiment was to find out if an in-
creasing number of replica nodes can also enhance the write
performance in mixed workload scenarios. This is reason-
able because by adding replica nodes, the primary node has
fewer read queries to handle. Thus, there is more time to
process write queries. Figure 3 verifies this hypothesis and
shows that even though our implementation generates over-
head for data exchange and cluster maintenance, it still in-
creases the performance significantly. The diagram shows a
huge drop in performance for mixed workloads compared to
a write-only workload. This has been observed before and
can be explained by a queueing delay as described in [25].

4.4 Replication Delay

Figure 4: Average commit divergence with increasing num-
ber of concurrent write requests.

There is a certain delay between the committing of trans-
actions on the primary node and on replica nodes. This
experiment should tackle the question how large this delay
is. The commit divergence describes the di↵erence of the

last commitId of the primary node and the last commitId
of a replica node at a specific point in time. The average
commit divergence is the average of the sampling of com-
mit divergences of all nodes. The sampling frequency was
50ms. Figure 4 shows that with an increasing number of
concurrent write queries the average commit divergence in-
creases as well. Important to mention is the fact that there
was almost no commit divergence between the replica nodes
in our test scenario. They diverged by a maximum of two
commits.

Figure 5: Commit delay in ms with increasing number of
concurrent write requests.

More significant than the average commit divergence is
the commit delay in relation to time. If we take the number
of commits per millisecond and set this in relation to the
commit divergence, we will get the commit delay measured
in milliseconds, naively said: the time it takes until a commit
which was completed on the primary node is completed on
a replica node. Figure 5 shows the results of this calculation
and in contrast to Figure 4 the values are almost stagnating
independent of the concurrency level. Commits take roughly
between 108ms and 120ms to get from primary to replica
node. The results of these measurements depend a lot on
the used hardware and network infrastructure.
If we imagine a burst of write queries and afterwards no

requests at all, the cluster will be in a stale state for around
120ms. This is acceptable for our enterprise use case as a
replication approach like this would not be used for critical
infrastructure like transportation or power supply.

4.5 Impact of Exchanging Replication Data
To propagate the commits throughout the cluster, the ex-

change of data is necessary as explained in Section 3.2. This
data exchange is considered as overhead and it increases
with an increasing number of replica nodes. The experiment
shown in Figure 6 was supposed to find out the impact of
the communication overhead. As we can see, there is no im-
pact of the communication overhead. The small fluctuations
could be explainable by network and computation perfor-
mance variations. At least in our test scenario the overhead
of communication is apparently too small to degrade perfor-
mance. In another environment where nodes would not be
that closely connected we would expect overhead caused by
network communication.

Figure 6: Write-only workload with increasing number of
replica nodes.

5. FUTURE WORK
Future work includes a more sophisticated approach to

handle the query distribution in the dispatcher. A possible
solution could apply cost models [19] in order to estimate the
workload a query will cause and then distribute the queries
in a way which improves resource utilization. Furthermore,
we stated that the dispatcher is a single point of failure.
Setting up a second (or more) dispatcher and implementing
some kind of heartbeat protocol between these dispatchers
can improve the availability. If the primary dispatcher was
considered to have failed, the second dispatcher would take
over. The switching of dispatchers from a client’s perspec-
tive could be achieved by DNS manipulation.

Besides improvements regarding the dispatcher, a more
complicated failover mechanism could be implemented. Our
naive approach has the problem that the message delay can
have a huge impact on the worst case detection time: a
HEARTBEAT_REQUEST of a failed primary node arriving with
a delay d (where d should be smaller as the threshold TH)
might delay the failure detection and thus the execution of
the failover process by d. In our test scenarios message delay
and loss were negligible but the implementation of improved
algorithms like in [5, 12, 8] could be done to prepare the
failure detector for these situations.

The inter node communication as described in Section 3.2
could be realized by other hard- and software technologies.
OpenMPI could be considered as software framework to han-
dle the communication. Hoefler et al. show in [13] how In-
finiBand, a high-performance networking standard, can be
used as the communication medium for OpenMPI.

6. CONCLUSION
In this paper, we presented Hyrise-R as a system to cluster

instances of the in-memory database Hyrise using lazy mas-
ter replication. The communication layer focuses on scal-
ability, reliability and multicast communication to achieve
performance enhancements. We implemented a heartbeat
protocol and a failover mechanism to increase availability
and utilize the redundancy caused by replication and evalu-
ated our approach using an Amazon EC2 cluster.

7. ACKNOWLEDGMENT
Stefan Klauck has received funding from the European

Union’s Horizon 2020 research and innovation program 2014-
2018 under grant agreement No. 644866 (SSICLOPS). This
document reflects only the authors’ views and the European
Commission is not responsible for any use that may be made
of the information it contains.

8. REFERENCES
[1] Amazon Web Services, Inc. Amazon elastic compute

cloud - user guide for linux (api version 2014-10-01),
Feb. 2015.

[2] J. Benzi and M. Damodaran. Parallel three
dimensional direct simulation monte carlo for
simulating micro flows. In Parallel Computational
Fluid Dynamics 2007, pages 91–98. Springer, 2009.

[3] Y. Breitbart, R. Komondoor, R. Rastogi, S. Seshadri,
and A. Silberschatz. Update propagation protocols for
replicated databates. In Proceedings of the 1999 ACM
SIGMOD International Conference on Management of
Data, SIGMOD ’99, pages 97–108, New York, NY,
USA, 1999. ACM.

[4] E. Cecchet, G. Candea, and A. Ailamaki.
Middleware-based database replication: the gaps
between theory and practice. In Proceedings of the
2008 ACM SIGMOD international conference on
Management of data, pages 739–752. ACM, 2008.

[5] W. Chen, S. Toueg, and M. K. Aguilera. On the
quality of service of failure detectors. Computers,
IEEE Transactions on, 51(5):561–580, 2002.

[6] D. DeWitt and J. Gray. Parallel database systems:
The future of high performance database systems.
Commun. ACM, 35(6):85–98, June 1992.

[7] W. Emmerich. Software engineering and middleware:
a roadmap. In Proceedings of the Conference on The
future of Software engineering, pages 117–129. ACM,
2000.

[8] M. G. Gouda and T. M. McGuire. Accelerated
heartbeat protocols. In Distributed Computing
Systems, 1998. Proceedings. 18th International
Conference on, pages 202–209. IEEE, 1998.

[9] J. Gray, P. Helland, P. O’Neil, and D. Shasha. The
dangers of replication and a solution. In Proceedings of
the 1996 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’96, pages 173–182,
New York, NY, USA, 1996. ACM.

[10] M. Grund, P. Cudre-Mauroux, J. Krüger, S. Madden,
and H. Plattner. An overview of hyrise - a main
memory hybrid storage engine. IEEE Data
Engineering Bulletin, 2012.

[11] M. Grund, J. Krüger, H. Plattner, A. Zeier,
P. Cudre-Mauroux, and S. Madden. Hyrise: A main
memory hybrid storage engine. Proc. VLDB Endow.,
4(2):105–116, Nov. 2010.

[12] N. Hayashibara, X. Defago, R. Yared, and
T. Katayama. The ' accrual failure detector. In
Reliable Distributed Systems, 2004. Proceedings of the
23rd IEEE International Symposium on, pages 66–78.
IEEE, 2004.

[13] T. Hoefler, C. Siebert, and W. Rehm. A practically
constant-time MPI Broadcast Algorithm for

large-scale InfiniBand Clusters with Multicast. page
232, 03 2007.

[14] B. Kemme and G. Alonso. Don’t be lazy, be
consistent: Postgres-r, a new way to implement
database replication. In Proceedings of the 26th
International Conference on Very Large Data Bases,
VLDB ’00, pages 134–143, San Francisco, CA, USA,
2000. Morgan Kaufmann Publishers Inc.

[15] A. Kemper and T. Neumann. Hyper: A hybrid
oltp&olap main memory database system based on
virtual memory snapshots. In Data Engineering
(ICDE), 2011 IEEE 27th International Conference on,
pages 195–206. IEEE, 2011.

[16] J. Krueger, C. Kim, M. Grund, N. Satish, D. Schwalb,
J. Chhugani, H. Plattner, P. Dubey, and A. Zeier. Fast
updates on read-optimized databases using multi-core
cpus. Proc. VLDB Endow., 5(1):61–72, Sept. 2011.

[17] M. M. Michael, J. E. Moreira, D. Shiloach, and R. W.
Wisniewski. Scale-up x scale-out: A case study using
nutch/lucene. In IPDPS, pages 1–8. IEEE, 2007.

[18] T. Mühlbauer, W. Rödiger, A. Reiser, A. Kemper, and
T. Neumann. Scyper: Elastic olap throughput on
transactional data. In Proceedings of the Second
Workshop on Data Analytics in the Cloud, DanaC ’13,
pages 11–15, New York, NY, USA, 2013. ACM.

[19] S. Müller and H. Plattner. An in-depth analysis of
data aggregation cost factors in a columnar
in-memory database. In ACM Fifteenth International
Workshop On Data Warehousing and OLAP colocated
with ACM CIKM, Maui (HI), USA, 2012.

[20] H. Plattner. A common database approach for oltp
and olap using an in-memory column database.
SIGMOD, 2009.

[21] H. Plattner. The impact of columnar in-memory
databases on enterprise systems: Implications of
eliminating transaction-maintained aggregates. Proc.
VLDB Endow., 7(13):1722–1729, Aug. 2014.

[22] H. Plattner. E�cient transaction processing for hyrise
in mixed workload environments. In In Memory Data
Management and Analysis: First and Second
International Workshops, IMDM 2013, Riva del
Garda, Italy, August 26, 2013, IMDM 2014,
Hongzhou, China, September 1, 2014, Revised Selected
Papers, volume 8921, page 112. Springer, 2015.

[23] A. Thomson, T. Diamond, S.-C. Weng, K. Ren,
P. Shao, and D. J. Abadi. Calvin: Fast distributed
transactions for partitioned database systems. In
Proceedings of the 2012 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’12,
pages 1–12, New York, NY, USA, 2012. ACM.

[24] C. Tinnefeld, S. Müller, H. Kaltegärtner, S. Hillig,
L. Butzmann, D. Eickho↵, S. Klauck, D. Taschik,
B. Wagner, O. Xylander, A. Zeier, H. Plattner, and
C. Tosun. Available-to-promise on an in-memory
column store. In T. Härder, W. Lehner, B. Mitschang,
H. Schöning, and H. Schwarz, editors, BTW, volume
180 of LNI, pages 667–686. GI, 2011.

[25] J. Wust, M. Grund, and H. Plattner. Tamex: A
task-based query execution framework for mixed
enterprise workloads on in-memory databases. In
IMDM, INFORMATIK 2013, 2013.

